Involution on quiver varieties and quantum symmetric pairs

Hiraku Nakajima, Kavli IPMU, University of Tokyo

Online Algebraic Geometric Seminar

2025-11-19

 §1. Quiver varieties $\Gamma\subset SU(z)$ finite subgroup \iff ADE classification $\Gamma\subset SU(z)$ finite subgroup \iff ADE classification $\Gamma\subset SU(z)$ finite subgroup \iff ADE classification $\Gamma\subset SU(z)$ finite subgroup \iff Vertex of affine Dyntin diagram $\Gamma\subset SU(z)$ finite subgroup \iff Γ of Γ of Γ of Γ invariant Γ and Γ and Γ invariant Γ and Γ invariant Γ inva

ver 17 = L-0200

 $E|_{l\infty} \cong O_{l\infty} \oplus P_i^{\oplus w_i}$

Assume Wo = 0 = vo

 $H'(E(-l_{oo})) \cong \bigoplus \rho_i^{\oplus U_i}$

So finite Dynkin diagram

Fact. smooth quasi-projective variety

§2. Quiver varieties and representation theory
[N'94] topology of M ~> representations of J

Himidale (M(v, w)) is an irreducible finite dimensional representation

of of with lighest weight - w

§2. Quiver varieties and representation theory
[N'94] topology of M ~> representations of J

Hindele (M(v, w)) is an irreducible finite dimensional representation
of of with lighest weight - w [N, Varagnolo'98] $\mathbb{C}^* \times \mathbb{T}_w \to \mathbb{W}$ action on base $(x,y) \mapsto (tx,ty)$ $(x,y) \in \mathbb{C}^2$ framing $\mathbb{T}_w = \mathbb{T}_p^*(\mathbb{C}^\times)^{w_i}$ ⊕ Kequ(M(U, w)), ⊕ Hequ(M(V, w)) are representations of

§2. Quiver varieties and representation theory
[N'94] topology of M ~> representations of J

Hindele (M(v, w)) is an irreducible finite dimensional representation

of of with lighest weight - w [N, Varagnolo'98] $\mathbb{C}^* \times \mathbb{T}_{\mathcal{S}} \to \mathbb{M}$ action on base $(x,y) \mapsto (tx,ty)$ $(x,y) \in \mathbb{C}^2$ framing $\mathbb{T}_{\mathcal{S}} = \mathbb{T}_{\mathcal{S}}(\mathbb{C}^{\times})^{\omega_i}$ € Kequ(M(U, w)), € Hequ(M(V, w)) are representations of quantum loop algebra / Yangian associated with g Up(LG): deformation of Lg=g[z,z] (4(g): deformation of Cg=g[z] Categories a representations of Up(Lg)/Yh(g) are much more complicated than category of representations of g. finite dimensional not semisimple not commutative (monoidal)

§2. Quiver varieties and representation theory
[N'94] topology of M ~> representations of J

Hindele (M(v, w)) is an irreducible finite dimensional representation

of of with lighest weight = w [N, Varagnolo'98] $\mathbb{C}^* \times \mathbb{T}_{w} \to \mathbb{C}^* \times \mathbb{T}_{w} \to \mathbb{C}^* \times \mathbb{C}^* \to \mathbb{C}^*$ framing $Tw = T(C^{\times})^{\omega_i}$ € Kequ(M(U, w)), € Hequ(M(V, w)) are representations of quantum loop algebra / Yangian associated with g Ug(Lg): deformation of Lg=g[z,z] /4(g): deformation of Cg=g[z] Cotegories of representations of Ty(L9)/Yth (8) are much more complicated than caregory of representations of of the hereafter finite dimensional not semisimple not commutative (monoidal)

M, N: representations of $g \to M \otimes N \cong N \otimes M$ as representations of $g \to M \otimes N \to N \otimes M$

It is no longer true for 1/4 (8).

What is true?

 $\exists \{M(u)\}\ u \in \mathbb{C}$! 1-parameter family of representations (spectral parameter) (corresponding to $\Im\{z\} \to \Im\{z\}$) $z \mapsto z + u$

 $M(u) \otimes N \cong N \otimes M(u)$ for generic u

M, N representations of $f \Rightarrow M \otimes N \cong N \otimes M$ as representations of f $M \otimes n \mapsto n \otimes m$

It is no longer true for 1/4 (9).

What is true?

 $\exists \{M(u)\}\ u \in \mathbb{C}$! 1-parameter family of representations (spectral parameter) (corresponding to $\Im\{\Xi\} \to \Im\{\Xi\}$) $z \mapsto z + u$

 $M(u) \otimes N \cong N \otimes M(u)$ for generic u R(u) given by R-matrix, which is a rational

function in u.

 characterized uniquely by certain upper triangular properties.

- · depending on order (W', W2)
- o choice of sign = of \(\tag{\tag{V}} \) of a certain bundle (polarization)
- o isomorphism & Firac H* (pt)

§3. Marrie - Okonskov stable envelope

Fix a decomposition $W = W^1 + W^2$ $(W_i = W^1_i + W^2_i)$ $\stackrel{*}{=} (1, t)$ $\Rightarrow M(V, W) \stackrel{*}{=} \coprod_{V = V^1 + V^2} M(V^1, W^1) \times M(V^2, W^2)$ $\vdots \quad H^*_{egn}(M(V, W)) \stackrel{\text{restriction}}{\longrightarrow} \bigoplus_{V^1 + V^2 = V} H^*_{egn}(M(V^1, W^1)) \otimes H^*_{egn}(M(V^2, W^2))$ Stab

characterized uniquely by certain upper triangular properties.

- · depending on order (W', W2)
- o choice of sign = of \(\tag{\sqrt{a}} \) of a certain bundle (polarization)
- o isomorphism & Frac Hern(pt)

(Stab) - 1 o Stab + (+ : w', w², - : w², w¹)
gives the R-matrix of Yh(g)

In fact, one can reconstruct (G) from R-motrix. Thus stable envelope gives a different proof of [Unagnolo '98].

§4. Involution on quiver varieties and quantum symmetric pairs (after Y. Li)

Fact. quiver variety

 $M \equiv M(v, vr)$: framed moduli space of Γ -equivariant torsion free sheaves E over $\mathbb{P}^2 = \mathbb{C}^2 \cup \mathbb{Q}_{\infty}$ with $W_0 = 0 = V_0$ is a framed moduli space of vector bundles over $\mathbb{P}^2/\Gamma = \mathbb{C}^2/\Gamma \cup \mathbb{Q}_{\infty}$

 \Rightarrow $M(v,w) \xrightarrow{*} M(v^*,w^*)$ given by $E \mapsto E^*$ and vector bundle

§4. Involution on quiver varieties and quantum symmetric pairs (after Y. Li)

Fact. quiver variety $\mathbf{M} \equiv \mathbf{M}(\mathbf{v}, \mathbf{v})$: framed moduli space of Γ -equivariant torsion free sheaves E over $\mathbb{P}^2 = \mathbb{C}^2 \cup \mathbb{Q}_{\infty}$ with wo = 0 = vo is a framed model ispace of vector bundles over P2/p= C2/pulmp

 \Rightarrow $M(v,w) \xrightarrow{*} M(v^*,w^*)$ given by $E \mapsto E^*$ and vector bundle

Choose $\circ V = V^*$ ($\Leftrightarrow 1^{gt}$ Chern class $C_1(E) = 0$) $\circ W = W^*$ a bit more precisely: choose $\bigoplus p_i^{gt} \cong \bigoplus p_i^{gt} \otimes W_i^{gt}$ symplectic or orthogonal form

We get an involution of M(v.w)

Such that the fixed point locus M(v.w) is
a framed moduli space of Symplectic or Orthogonal bundles over IP/p.

Remart. Li considers more general involutions 5 = (diagram) o dual e.g. M(v, w) = cotangent bundle of flags (D) V1>V2>··> V2>V1>/01 Stable envelope $(X \rightarrow M(V, W))$ must be compatible with symplectic / orthogonal form. $V = W^0 + W^1 + W^{-1}$ instead of $W = W^1 + W^2$ before $V = W^1 + W^2$ before $V = W^1 + W^2 + W^2$

Stable envelope $(X \rightarrow M(V, W))$ must be compatible with symplectic/orthogonal form. $V = W^0 + W^1 + W^{-1}$ instead of $W = W^1 + W^2$ before $V = W^0 + W^1 + W^{-1}$ instead of $V = W^1 + W^2$ before $V = W^1 + W^2$ before $V = W^1 + W^2$ before Observation $(M(v, w)^5)^{C*} \cong \coprod M(v^0, w^0)^5 \times M(v', w')$ usual quiver variety Here (M(V,W)) => + Here (M(V,W)) > > Here (M(V,W)) Stab + (Stab) - (Stab)

stable envelope
Stable envelope (X >> M(V, W) must be compatible with symplectic/orthogonal form.
four.
$\sim > W = W^0 + W^1 + W^{-1}$ instead of $W = W^1 + W^2$ before
self dual O dual
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
*
Observation $(M(v, w)^{5})^{C^{*}} \cong \coprod M(v^{0}, w^{0})^{5} \times M(v^{1}, w^{1})$
$\frac{1}{(\gamma((0,\omega)))} = \frac{1}{(\gamma((0,\omega)))} + W((0,\omega))$
\sim
usual quiver variety
Hexu(M(V,W)) \(\ightarrow\) \(\ightarrow\) \(\text{Hexu}(M(V,W)) \) \(\text{Stab}^{\pm}\) \(\text{Stab}^{\pm}
(Stab) o Stab
K-matrix
twisted twisted
Rep. of Yangian Rep. of Yangian Rep. of Yulf)
Consdule category of the monoidal category
0 0

§5. Quartum Symmotric pairs (very triet)

§: Semisimple Lie algebra / Γ σ : involution

(g, gs): Symmetric pair (N_1 , N_2 , N_2)

(N_1 , N_2)

(N_2 , N_3)

(N_2 , N_3)

(N_3)

(N_3) N_4) N_4) N_5)

§5. Quartum symmetric pairs (very briet) of: semisimple Lie algebra / (5: involution (of go): symmetric pair (sln , son), (slzu, Mpzn) (Sl_n , $\Delta(gl_p \oplus gl_2)$) N = p + 2 $g[z] \supset \sigma \otimes (-1) ; \chi(z) \mapsto \sigma(\chi(-z))$ involution twisted Yangian Ytw (85) = quartization of 9[2] (0 (-1) different from Yangian & gs (tw(go) < ((g)) A (tw(go) < (tw(go) & Vth (go) & Vth (g)

coided subalgebra Perp (th) (2°) 8 Resp (519) -> Resp (th) (3°)

module category

Th(Li'19) A Hegy (M(v,w)) is a representation of Yth (gs) constructed by K-matrix.

Th(Li'19) Hegy (M(v,w)) is a representation of Yth (gs) constructed by K-matrix.

Remark [N.'26]: compute K-matrix explicitly in examples $\Rightarrow Y^{tw}(g^{\sigma}) = twiAcd Yangian in the literature Olshanski, Molev, Ragonay$

[11'26] also pointed out an Obstruction on polarization ± (well-definedness of K-matrix)

Th(Li'19) & Hegy (M(U,W)) is a representation of Yth (gs) constructed by K-matrix.

Remark [N.'26]: compute K-matrix explicitly in examples $\Rightarrow Y^{tw}(g^{\sigma}) = twiAcd Yangian in the literature
Olshanski, Molev, Ragonay$

[N'26] also pointed out an Obstruction on polarization I (well-definedness of K-motrix)

more important remark:

This conservation works only $5 = (\text{diagram auto}) \circ (\text{Chevalley inv})$ e.g. (Alan, Man) is excluded.

-> Need to consider singular varieties

Singular moduli already treated in Braverman-Fintelkerg-N
11 Instanton moduli spaces and W-algebras 11 Possible Application?

Known: Classification of finite dimensional irreducible representations

Conj. (1) character formula in terms of intersection cohomology
(2) computation of intersection cohomology

by "canonical base".

Possible Application?

Known: Classification of finite dimensional irreducible representations

Conj. (1) character formula in terms of intersection cohomology.
(2) computation of intersection cohomology.

by "canonical base".

Thank you very much!